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Abstract Predictive classification ofmajor structural families
and fold types of proteins is investigated deploying logistic
regression. Only five to seven dimensional quantitative
feature vector representations of tertiary structures are found
adequate. Results for benchmark sample of non-homologous
proteins from SCOP database are presented. Importance of
this work as compared to homology modeling and best-
known quantitative approaches is highlighted.
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Introduction

Structural classification of proteins helps deciphering their
evolutionary connections and local and tertiary fold
relationship between them. Several databases in public
domain exist which perform this classification at various
hierarchical levels, with different objectives. Principal
among them are the SCOP [1] and CATH [2] databases.

Computational modeling of protein structures using quan-
titative data structures offers efficient, cost-effective applica-
tions for classification as well as characterization of protein
structures, analysis of protein structure-function correlations
and understanding of protein structural genomics. Quantitative
data structures found computationally feasible in wide-ranging
applications of this kind mostly consists of feature vectors,
trees, and graphs.While tree or graphs are of direct applications
in homology mapping and/or computer aided analysis of
molecular recognition, protein binding and functional inter-
actions (e.g., [3–6]), computing with these is more complex
and often requires special data mining algorithms and tools as
compared to feature vector representation.

Quantitative feature vectors are computationally the
simplest data structures. These are also most suitable for
applications of theoretically sound statistical data mining
techniques. Representation of fixed size segments of
protein sequences as quantitative feature vectors has been
useful in phylogenic classification and secondary structure
analysis of proteins and has also offered applications in ab
initio prediction of tertiary structure [7–11].

Chi et al. [12, 13] have used 25-dimensional feature
vector for fast protein structure retrieval and fold classifi-
cation. We have attempted structural classification at the
first level of the hierarchy in SCOP considering the local
and global quantitative features used by them. Sequential as
well as structural similarity is important in homology
modeling. In view of this, we considered also incorporating
some sequential features which are not a linear combination
of the features used by Chi et al., yet which are of the same
‘type’ in the sense that it pertains to geometry and does not
explicitly require the knowledge of which amino acids are
there in the sequence and in what order, etc.

Length of a protein sequence is simplest if its linear
geometrical features satisfying the above criterion. Our earlier
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studies on ab initio prediction of protein tertiary structure using
only the primary sequence have shown this feature as a
statistically significant variable in correlation of the inter-
residue distances in primary and tertiary structures of proteins
[10, 14]. Moreover, inclusion of this feature does not increase
the complexity of computing the feature-vector, so we have
included it along with the features used by Chi et al [12, 13].

Principal component analysis is carried out to get
descriptors of these features collectively in a reduced dimen-
sional space.Multi-class logistic regression is then applied to
provide possible application for predictive classification. The
results show significance of specific features in characterizing
specific structural families of proteins, and also in identifying
different types of folds within a family (class).

Materials and methods: quantitative feature vector
representation and analysis

We represent a structured protein as a data point in a 26-
dimensional feature space. These 26 features are listed in
Table 1. Length of protein sequence, listed as the first

global feature in this table, is computed as the number of
amino acids in the primary sequence. The remaining 25
features are as defined by Chi et al. [12]. These incorporate
features of geometrical model as well as stereochemical
nature of a protein’s tertiary structure.

As no web-server or software is available for computing
these features, we have developed our own programs on
Linux platform to compute these features, as described in Chi
et al. [12]. The names and notations of these features are
retained as in their paper. Among these, there are a total of
16 local features (histogram features) and the remaining nine
are global features that are measured as texture measures. All
these computed from the pixel matrix of inter-residue
distances. If only specific (structural) domain of a protein is
under consideration then the feature vector is computed only
for that portion.

Pixel Matrix Pair-wise Euclidean distances between the
coordinates of the backbone residues of the protein under
consideration are computed. (This matrix is symmetric with
diagonal elements as zeros. So, only its upper or lower triangle
is computed). This inter-residue distance matrix is converted
into a Pixel Matrix where distances are converted to 32 gray
levels: minimum distance = 0 and maximum distance = 31
pixels.

The 16 local (histogram) features are obtained as follows.
The pixel matrix is partitioned diagonally into four band-strips
as illustrated in Fig. 1. In each band, four local features are
computed as relative frequencies of inter-residue distances in
the (pixel) ranges 0 to 7; 8 to 15; 16 to 23; and 14 to 31.

The nine global features are calculated as texture
measures of the pixel matrix; these are defined as functions

Table 1 Serial numbers, as successive components of the feature
vector X, of features are shown as “1)”, “2)”, etc. in this table. Local
feature numbers 2 to 17 are histogram features and global features 18
to 26 are texture measures of pixel matrix. The abbreviations in
parenthesis for each feature are used throughout the text

Features

Local Global

16 Histogram feature

Band1 1) Length (Len)

2) Histogram [1, 1] (H1)

3) Histogram [1, 2] (H2) 9 Texture measure

4) Histogram [1, 3] (H3) Orderliness group

5) Histogram [1, 4] (H4) 18) Maximum probability (Mxpr)

Band2 19) Uniformity Of energy (Ener)

6) Histogram [2, 1] (H5) 20) Entropy (Entr)

7) Histogram [2, 2] (H6) Contrast group

8) Histogram [2, 3] (H7) 21) Homogeneity (Homo)

9) Histogram [2, 4] (H8) 22) Contrast (Cont)

Band3 23) Dissimilarity (Dis)

10)Histogram [3, 1] (H9) 24) Inverse difference moment (Idm)

11)Histogram [3, 2] (H10) Statistical group

12)Histogram [3, 3] (H11) 25) Cluster tendency (Clust)

13)Histogram [3, 4] (H12) 26) Correlation (Cor)

Band4

14)Histogram [4, 1] (H13)

15)Histogram [4, 2] (H14)

16)Histogram [4, 3] (H15)

17)Histogram [4, 4] (H16)

Fig. 1 Illustration of four bands in an nXn pixel matrix; values above
the top horizontal boundary indicate column nos; and those on the left
of 1st vertical boundary denote the row nos. Pixel at ith row, jth
column corresponds to distance between ith & jth residues
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of the spatial variation in pixel intensities (gray levels).
These are computed using the gray level co-occurrence
matrix (GLCM), which explains the distribution of a pairs
of gray levels in the pixel matrix. The (i, j)th element of the
GLCM denoted by P(d, θ) is computed as the number of
times the gray level i and j are separated by distance ‘d’
with direction ‘θ’ in the pixel matrix. In our computations,
we have taken d=1 and θ=(0, 45, 90, 135, 180, 225, 270,
315). We thus obtain eight GLCM matrices in total.

The desired nine texture measures are computed using
the formula given in Chi et al. [12]. Our computer program

to calculate the feature vector may be obtained from the
corresponding author.

Pixel matrix and local structural folds Pair-wise distances
between Cα backbone residues are of key importance in
determination or prediction of protein structures — espe-
cially the secondary structure and local folds of the tertiary
structures [15]. The ab initio methods of prediction of
protein tertiary structure from primary sequence extensively
rely upon inter-residue distances. Conventional statistical
estimates of the lower and upper bounds on inter-residue
distances in alpha-helix, beta sheets, and coils obtained
from large samples, are often useful for short range span:
For example, if amino acid a primary sequence positions ‘i’
and ‘j’ are both part of an alpha helices fold in the tertiary
structure then the distance dij (i.e., distance between them in
3-dimensional Euclidean space) between them would
satisfy, dij ∈ [4.5, 7.5] if j is 3rd or 4th neighbor of ‘i’ on
the primary sequence, etc. However, no such estimates are
available for medium or long-range spans in general, e.g.,
for j> i+20, etc. Different methods deploy different
approaches to compute/estimate or otherwise incorporate
inter-residue distances; for example, lattice models [16],

Table 2 Cumulative percentage of variance contributed by the first
five PCs in different classes

All Alpha All Beta Alpha/Beta Alpha+Beta

PC 1 49.21 45.60 48.90 41.80

PC 2 15.49 17.41 15.31 25.07

PC 3 11.11 10.67 10.57 10.55

PC 4 6.23 7.41 8.10 6.11

PC 5 3.54 4.88 5.17 2.69

Total 85.58 85.97 88.05 86.22

Fig. 2 The bar-diagrams
correspond to the data from
class (a) All Alpha; (b) All Beta;
(c) Alpha/Beta; and (d) Alpha
+Beta. In each diagram, labels,
1, 2, …, etc on the X-axis denote
the successive principal
components PC1, PC2, ….,etc.
The Y-axis shows eigenvalues of
covariance matrix of the 26
dimensional feature vector. A
horizontal line is drawn at
eigenvalue=1 for clear
indication of the fact that in each
class, the eigenvalue
corresponding to the first five
PCs is >1. In most cases the
eigenvalues corresponding to
PC16 onward are negligible
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threading [17], and/or nonparametric statistics and
knowledge-based heuristic [10].

The bands in pixel matrix incorporate important informa-
tion on inter-residue distance distribution in certain structural
folds. In view of the earlier studies [18], if the pixel matrices
of alpha helices in proteins of length n are aligned then there
will be maximal alignment and matching in the segments (in
one or more of the four bands) that are close and parallel to
the diagonal. Thus, for helices of length ≤ n / 4, the value of
feature H1 will be almost the same in all the corresponding
feature-vectors and H2 may also have small variance in any
sample of these feature-vectors.

For parallel beta sheets the aligned portions of pixel
matrices would be away from the diagonal in the bands
corresponding to the size of the sheet. Thus, for example,
features like H4 and H8 and may be H3, H7 would have small
variances in the sample of feature-vectors of parallel beta sheets
of length greater than n/4 and≤n/2. Alignment of inter-residue
distances for anti-parallel beta sheets would span across
segments perpendicular to the diagonal of their superimposed
pixel matrices. These segments would be spread across one or
more bands depending upon the length of the anti-parallel
beta sheets. Thus, the distribution of pixels and the angle
between the farther ones in these segments would be similar
across the motifs (aligned portions) of such sheets.

In essence, the length of protein, 16 histogram-features,
and texture measures depending upon ‘d ’ and the direction
angle ‘θ ’ of corresponding GLMCs P(d, θ ), would
collectively extract the secondary structural (local) folds of
different types and sizes and their relative and interactive
positions in the tertiary structural domains.

Structural classes and fold types

We focus on classification of protein tertiary structures in four
major families— All Alpha, All Beta, Alpha/Beta and Alpha+
Beta. Introduction to these structural folds with illustrative
graphics may be found in [15] and in structural domain
definitions of SCOP database (http://scop.mrc-lmb.cam.ac.uk/
scop/). We have carried out quantitative representation and
analysis in both the cases — (i) classification among these

four classes (families) while considering protein domains
having common fold types within a class; (ii) classification
while allowing different structural folds within each class.

Data set for common structural fold within a class

Considering that SCOP database does finer structural
classifications at different fold levels and is also the basis/
yardstick of test of the work reported by Chi et al. [13], we
have considered structural families and fold types of protein
(domains) as identified in this database. For exhaustive
search we randomly selected maximum possible number of
high-resolution structures of proteins the structural domains
of which are authenticated in SCOP such that a comparable
number of non-redundant observations are available from
each of the four classes of interest and such that samples
from each class will contain different possible sizes and
orientation of the structural domain it represents.

Development of any data-mining algorithm for predictive
applications requires the data set to be bias-free. Considering
this, from among the randomly selected set we have chosen a
sample of 225 proteins, which are mutually non-homologous
[1]. List of these with indication of specific chains and
structural domains as tagged in SCOP is given in the
Appendix. Pair-wise sequential homology between these was
tested using ClustalW program [19] and is found to be less
than ≤ 25% with most pairs having less than 18% identity.

Table 3 The features that were found important in terms of
statistically significant (confidence level >90%) correlation with the
first three* PCs are listed here for the data described in section “Data
set for common structural fold within a class”; abbreviated names of

features are as in Table 1. (*correlation with other PCs are not found
significant). Magnitude of correlation coefficient in each case is ≥0.75.
Superscript ‘(−)’ indicates that its sign is negative

Class Significant features

All Alpha H2, H5(−), H9(−), H10(−), Ener, Entr(−), Homo, Cont(−), Dis(−), Idm, Cor

All Beta Len(−), H1(−), H5(−), H9, Ener(−), Entr, Homo(−), Cont, Dis, Idm(−), Cor(−)

Alpha/Beta H1, H8(−), H9(−), H10 (−), H11(−), H12, H13, Ener, Entr(−), Homo, Cont(−), Dis(−), Idm, Cor, Mxpr

Alpha+Beta Len(−), H1(−), H2(−), H8(−), H9, H10, H12, H16, Mxpr, Ener(−), Entr, Homo(−), Cont, Dis, Idm(−), Clust, Cor(−)

Table 4 Coefficients (i.e., components of vectors βj in model-Eq. 1
for jth class ) of the PCs, and intercept (αj), in logistic regression
model

Regressor variable Class

All Alpha All Beta Alpha/Beta

PC1 −0.3822 0.2904 1.5661

PC2 −1.1679 0.6538 −6.2338
PC3 −0.6 1.7431 1.8762

PC4 2.3261 −1.3407 2.4824

PC5 2.291 −0.0603 4.3087

Intercept 1.4423 −2.3951 −13.519
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Common fold types within the classes of interest are: fold
“a.4” of class All Alpha ; fold “b.1” of class All Beta ; fold
“c.1” of class Alpha/Beta and fold “d.58” of class Alpha+Beta.

A Jackknife type technique is applied for optimal
training and cross-validation [20, 21]. In each experiment,
a random subset of the above described set of 225 proteins
is used as the training sample and the remaining as
validation. Everytime, the training sample has about 40
representatives from each class.

Data set for different structural fold types within a class

We have extended the above work on different folds within
each class. This data set consists of vectors of about 30–35
proteins from each major fold type in each class. A list of
these is also given in the Appendix. Structural domains
satisfying non-homology at sequential levels and different
structural fold types (as identified in SCOP database) are
considered. The following are the different fold types
chosen from the four classes of interest.

Class Fold types considered in our study

All Alpha Alpha Alpha Superhelix (a.207); EF
hand like (a.51); DNA/RNA 3 helical (a.8);
Cytochrome c (a.7);

All Beta Concanavaline (b.51); Immunoglobin like
(b.1); OB folds (b.71); Trypsin like serine
protease (b.80)

Alpha/Beta Flavodoxin (c.27); Ribonuclease H like (c.77);
Thioredoxin (c.68); Tim beta (c.1)

Alpha + Beta Beta grasp (d.30); Cystatin like (d.34); Protein
kinase (d.300); Ferredoxin (d.129)

We consider classification into different fold types within
each structural class. This is further extended on a combined
sample for classification among the four classes, using an
equal number of observations on each type of fold from a class
as representative of that class.

Quantitative representation and dimensionality reduction

The 26 features listed in Table 1 are computed for the
chosen dataset using our programs [22, 23] on Linux
platform with the support of bio3d utility of R-software.
Principal component analysis (PCA) is then applied to
reduce dimension of the 26-dimensional feature vector.

Principal component analysis (PCA)

Dimensionality reduction is most sought of in mining,
analysis and applications of multidimensional data. PCA is
a theoretically sound method that offers dimensionality
reduction while also preserving all the significant informa-
tion contained in the original data. It is a method of
dimensionality reduction in multivariate statistics that
transforms a number of possibly correlated variables into
a smaller number of mutually uncorrelated variables called
principal components. The k principal components of a k-
dimensional feature vector X are obtained by orthogonal
linear transformation: ith principal component of X=(νi)

T

X; where superscript ‘T’ denotes transpose of a vector; νI
denotes the eigenvector corresponding to the ith (in
descending order of magnitude) eigenvalue of the covari-
ance matrix of X.

Multivariate statistics theory [24] shows that the first
principal component captures maximum variability in the
data, followed by the second principal component and so on.
So, the first few principal components would provide most
of the useful information contained in any random sample of
observations on X. Thus, for further application, instead of
using k-dimensional vector X we may use a k*-dimensional
vector (k*<k) of the first k* principal components of X.

As presented in section “Results” below, in our study use
of only the first five (i.e., k*=5) principal components of

Table 6 The features that were found important in terms of
statistically significant (confidence level>90%) correlation with the
first three* PCs are listed here for the data described in Sect. “Data set
for different structural fold types within a class”; abbreviated names of

features are as in Table 1. (*correlation with other PCs are not found
significant). Magnitude of correlation coefficient in each case is ≥0.75.
Superscript ‘(−)’ indicates that its sign is negative

Class Significant features

All Alpha H1, H2, H5(−), H6(−), H9(−), H10(−), H11, Mxpr, Ener, Entr(−), Homo, Cont(−), Dis(−), Idm, Clust, Cor

All Beta H1, H2, H5(−), H11(−), H12(−), Mxpr, Ener, Entr(−), Homo, Cont(−), Dis(−), Idm, Clust, Cor

Alpha/Beta Len, H1(−), H2(−), H3(−), H5, H9, H10, H11, H14, H16, Mxpr(−), Ener(−), Entr, Homo(−), Cont, Dis, Idm(−)

Alpha+Beta Len, H1(−), H3(−), H8(−), H9(−), H11, H12, H13, H14, Mxpr(−), Ener(−), Entr, Homo(−), Cont, Dis, Idm(−), Clust, Cor(−)

Table 5 Average accuracy parameters (in %): True positives (TP),
false positives (FP) and area under the RO- curve (AROC)

Class TP FP AROC

All Alpha 75.7 16.1 88.5

All Beta 69.6 19.4 71.6

Alpha/Beta 79.7 8.3 89.7

Alpha+Beta 70.4 16.2 76.5
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the 26-dimenstional feature vector of protein-structure is
found adequate.

Relation of PCs with original descriptors

There need not be a one-to-one correspondence between
an original feature and a principal component. By
definition, every principal component being a linear
combination of original features would represent their
combined effect. First few principal components, which
explain maximum variability (and hence the information
content) of the data would capture the joint effect of the
important features and thus preserve the collective role of
original descriptors more efficiently.

In section “Materials and methods” we have highlighted
the importance of pixel matrix and hence the feature vectors
vis-à-vis the protein’s secondary structural folds. While
some individual histogram features might capture the
signature (motif) of an alpha helix or beta sheet of specific
lengths, the anti-parallel beta sheets require several global
features as well. As a single protein could have several
local folds of varied sizes at different positions, collective
role of all the features is essential to represent these. Even if
single structural domains per protein are considered, there
would be diversity of sizes and relative positioning across
the training sample from which the characteristic of a class
is to be extracted.

Therefore, the projection of original data into a
reduced dimensional space is required to be such that
the collective role of all the features is reflected.
Principal component analysis fulfils this requirement with
an additional advantage that the sign and magnitude of the
correlation coefficients of different features with a princi-
pal component also reflect their relative importance in
representing the data.

Classification using multi-class logistic regression

Consider the problem of classifying a feature vector Y in one
of the C classes of interest. A standard multi-class logistic
regression model defines the probability pj of Y belonging to
jth class, j=1, 2, …., C-1 as a logit function [25]:

ln
pj

1� pj

� �
¼ aj þ YTb

j
þ random error term: ð1Þ

The probability of Y belonging to the Cth class is defined as

pj ¼ 1� PC�1

j¼1
pj. This class is termed the reference class.

Fitting of such amodel amounts to estimating the intercepts
αj and the vector βj of unknown coefficients using a training
sample — of observations (on Y) from the C classes of
interest, so as to minimize the squared sum of random error.
Once the model is fitted, any given vector Y is assigned to
the class to which it would lie with maximum probability.

In our study, C=4. Having estimated the principal
components of the 26-dimensional feature vector X, we
obtain for each observation (Xi; i=1, 2, …, n) in the
training sample, the corresponding vector (Yi) of the first
five principal components and fit the logistic regression
model.

Results

We first present the results for the data set described in section
“Data set for common structural fold within a class”.

Principal component analysis

We found that in each of the four classes of interest, the
first five principal components explain nearly 85% (see

Table 8 Estimates of intercept and coefficients (βj for jth PC) for different fold types in the structural class All Beta. Fold type Trypsin-like-
serine-protease is used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7

Concanavaline 111.381 38.774 22.323 −50.104 39.854 99.182 1.2854 −5.268
Immunoglobin like 172.176 57.598 39.323 −73.44 81.096 28.744 47.703 6.078

OB folds 171.860 57.325 39.482 −73.679 81.229 27.734 47.809 5.165

Table 7 Estimates of intercept and coefficients (βj for jth PC) for different fold types in the structural class All Alpha. Fold type Cytochrome-C is
used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7

Alpha Alpha superhelix 15.172 −7.716 4.1634 1.1664 −3.479 3.5792 2.882 −4.077
EF hand like 18.233 −6.812 3.3299 2.0851 −2.852 2.048 2.398 −4.273
DNA/RNA 3 helical 18.448 −6.605 2.8673 2.5311 −2.704 1.4128 2.620 −4.111
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Table 2) of the total variance in the training sample.
Figure 2 shows the significance of the first five principal
components (PCs).

Role of different features in structural motifs

Analysis of the correlation of the first five PCs with
different features shows significant difference in influence
of certain features in different structural classes – in terms
of statistical significance of the correlation coefficient and
its magnitude and/or direction (positive or negative). Table 3
summarizes the main results.

From, this table it is clear that the classes All Beta and
Alpha+Beta are more similar to each other as compared to
the other two classes and the classes All Alpha and Alpha/
Beta are similar with respect to the features that are found
to describe them. Len (length of the protein sequence under
consideration) is found as a significant feature in the
description of the All Beta and Alpha+Beta but not in the
other two classes; another global feature mxpr (maximum
probability) is found as significant only in Alpha/Beta and
Alpha+Beta. Histogram feature H2 is found significant
only in All Alpha; H13 in only Alpha/Beta; and H16 only in
Alpha+Beta.

Cluster tendency (Clust) is found significant only in
describing the class Alpha+Beta. Most of the other texture
measures are found significant in all the classes except that
the signs of their correlation with the combined descriptors
(the first three PCs) are opposite in the All Alpha and
Alpha/Beta classes as against All Beta and Alpha+Beta.

Predictive classification

As described earlier, several computational experiments are
conducted using random subsets of the dataset described in

section “Data set for common structural fold within a class”
as training samples. In each experiment, 4-class logistic
regression is fitted using the R-software (http://www.r-
project.org/); the first five principal components (PC) are
regarded as the explanatory (regressor) variables. Alpha+
Beta class is considered as the reference class. Classes of
the feature-vectors in the validation samples are predicted
using the fitted model.

Coefficients of the PCs in this model are shown in
Table 4. The best model gave more than 82% prediction
accuracy for each class. Averages (of cross-validation
results) of the accuracy parameters are shown in Table 5.

The accuracies of predictive classification by other
models have also been satisfactory. The following table
shows average performance.

Results for different folds within a class

For the data set described in section “Data set for
different structural fold types within a class” we have
found that the first five PCs explain more than 85% of
variation in the data. The contributions of individual PCs
are also comparable with those shown in Table 2 and
Fig. 2.

Role of different features

Analysis of correlation of the first five PCs with the
features described in Table 1 shows interesting results. As
far as comparison between classes is concerned the roles of
features significant in distinguishing between the classes
remain similar to those summarized in Table 3. However,
comparisons within a class show distinct roles of certain
features with respect to different folds. Table 6 underneath
summarizes the key results.

Table 10 Estimates of intercept and coefficients (βj for jth PC) for different fold types in structural class Alpha + Beta. Fold type Ferredoxin is
used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7

Beta grasp 0.293 0.201 0.336 0.528 −0.510 −1.057 −0.861 1.182

Cystatin like 1.844 0.373 1.683 0.856 2.258 1.122 0.398 1.415

Protein kinase like −56.551 3.281 25.134 6.901 22.087 23.250 10.222 24.752

Table 9 Estimates of intercept and coefficients (βj for jth PC) for different fold types in the structural class Alpha/Beta. Fold type Tim-Beta is
used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7

Flavodoxin 146.439 53.569 −46.669 35.449 −143.669 −24.355 48.288 5.488

Ribonuclease H like 147.600 53.694 −46.664 36.826 −141.781 −24.945 48.642 5.819

Thioredoxin 147.571 53.645 −47.174 36.862 −142.458 −24.765 48.252 4.543
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Because of higher within-class variability (due to different
fold types), except H16, roles of no other local or global
features are so distinct as found in the case of common fold
types within a class (section “Role of different features in
structural motifs” above). Except “Len”, no other feature is
found to prominently distinguish even between groups of
classes. The role of length of protein sequence (len) is now
found significant in distinguishing between the classes
Alpha/Beta and Alpha+Beta against All Alpha and All Beta.
This indicates that the sizes of local (secondary) structural
domains are more variable with respect to the fold types in
the latter classes as compared to those in the former. This is
justified in view of the fact that the classes Alpha/Beta and
Alpha+Beta already have a mixed kind of local structural
domains, so variability with respect to different fold types
within such a class does not influence the role of length
(size) of the domains.

Predictive classification of structural fold types
within a class

As described in section “Data set for different structural
fold types within a class”, within each class we have
considered proteins with four different types of structural
folds. We have used multi-class logistic regression on the
first seven PCs, to predict these structural folds within each
class. As in each class, the first seven PCs explained more
than 85% of the total variation in data, so the first seven
PCs were considered as predictor variables. Similar to the
case of data with common structural folds within a class,
we have carried out several computational experiments
using the jackknife technique of cross-validation.

The estimated regression coefficients and intercepts of
best models for each class under consideration are shown in
Tables 7, 8, 9, and 10. For each class, the models show
overall predictive accuracy (i.e., percentage of correctly
classified fold types) ≥ 73%. Averages (of cross-validation
results) of the accuracy parameters are shown in Tables 11,
12, 13, and 14.

Predictive classification of using different structural folds
within a class

We have also carried out computational experiments on
predictive classification by multi-class logistics using
training samples of sizes about 40 from each of the
structural classes – All Alpha, All Beta, Alpha/Beta, and
Alpha+Beta. In this case the first seven PCs explain the
desired ( > 85%) of total variation in the data. In all
experiments, the training sample from a class consists of
about ten observations for each of the four different types
(described in section “Data set for different structural fold
types within a class”) of folds prominently found in this
class. Class Alpha+Beta is regarded as the reference class
for fitting of the logistic regression model with the first
seven PCs as the predictor variables.

Estimated parameters of the model are shown in Table 15
and average (of cross-validation results) accuracy results
are shown in Table 16.

The overall accuracy of correct classification (TP) in the
best model is around 74%. This as well as the average TP
for each class are lower as compared to those for the case
(section “Predictive classification” above) when the train-
ing sample from a class consisted of common structural

Table 14 Average accuracy parameters (in %) for classification of
different fold types within class Alpha+Beta: True positives (TP), false
positives (FP) and area under ROC- curve (AROC)

Fold type TP FP AROC

Beta grasp 64.7 18.1 86.5

Cystatin like 74.2 8.2 92.4

Protein kinase like 98.4 1.1 99.2

Ferredoxin 62.3 9.4 86.9

Table 13 Average accuracy parameters (in %) for classification of
different fold types within class Alpha/Beta: True positives (TP), false
positives (FP) and area under the ROC- curve (AROC)

Fold type TP FP AROC

Flavodoxin 85.3 12.1 90.2

Ribonuclease H like 59.6 12.4 84.6

Thioredoxin 61.4 10.6 82.3

Tim Beta 89.3 1.6 97.4

Table 12 Average accuracy parameters (in %) for classification of
different fold types within class All Beta: True positives (TP), False
positives (FP) and area under the ROC- curve (AROC)

Fold type TP FP AROC

Concanavaline 89.6 3.4 98.6

Immunoglobin like 66.7 12.2 90.1

OB folds 59.4 13.1 85.9

Trp like serine protease 88.9 3.8 98.2

Table 11 Average accuracy parameters (in %) for classification of
different fold types within class All Alpha: True positives (TP), False
positives (FP) and area under the ROC- curve (AROC)

Fold type TP FP AROC

Alpha Alpha superhelix 83.9 7.5 93.2

EF hand like 57.1 14.6 74.4

DNA/RNA 3 helical 62.3 13.9 79.4

Cytochrome C 91.7 4.1 91.6
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fold type. It is expected because in the present case the size
of the training sample is comparable to that used in the case
of common with-in class folds, but this training sample is
significantly heterogeneous.

Discussion

Statistical modeling and analysis of protein data carried out
in this paper has provided important quantitative insight
into major structural families (as identified in SCOP
database) and has also offered computationally feasible
and efficient predictive methods for their classification.
Computational methods using feature vectors are remark-
ably simpler to structural homology for classification of
proteins. Our approach has added advantages of reduced
dimension of the feature vector and use of statistical data
mining.

It is notable that though we have reduced the dimension of
quantitative feature-vector representation of protein tertiary
structures to at the most seven, the accuracy of structural
classification we get is comparable to or better than that of Chi
et al. [12, 13]. In the case of common fold types representing
a structural class, the dimension as less than five is adequate
for predictive classification with high accuracy. Apart from
dimensionality reduction, insight into relative importance of
certain features in specific structural folds is another gain
over the best-known relevant approach [12].

Efficient and theoretically sound method of principal
component analysis (PCA) is used here for dimensionality
reduction. Principal components being linear transforma-
tions of the original data are easy to compute. Moreover,
these being orthogonal (and hence uncorrelated) to each
other can also be used as explanatory variables in the
powerful predictive applications of regression modeling.

Comparative analysis in terms of significant correlation of
features with the key PCs reveals interesting results on
relative importance and representative roles of certain
topological, structural and stereochemical features in
describing and distinguishing the four major ‘classes’ of
protein structures.

As shown in Table 3, no histogram features in band4, i.e.,
no long-range inter-residue distances are important in
characterizing the All Alpha and All Beta type folds. Texture
measures and hence topological as well as stereochemical
factors are found more important (though mostly with
respect to the sign of correlation with the important PCs)
than local features in distinguishing between these classes.
Alpha/Beta structures appear closer to All Alpha with respect
to these features, whereas Alpha+Beta types seem to share
this similarity with All Beta.

When common fold types within a class are considered,
length (len) of a protein sequence under consideration is
found to play an important role in distinguishing All Beta
and Alpha+Beta classes from All Alpha and Alpha/Beta.
Another global feature mxpr (maximum probability) is
found to distinguish Alpha/Beta and Alpha + Beta from the
other two classes. Interestingly, for each class, one
significant local feature or global feature along with the
above is also found as an important descriptor. It is notable
that within class variability different fold types perturb this
influence except for the roles of H16 and len in the mixed
class Alpha + Beta.

Exact values of correlation coefficients and the regression
coefficients of the PCs in each class can be used for detailed
statistical analysis of interactive roles of local folds in a tertiary
structure, which is not possible otherwise. Using these values,
computer aided molecular designs of certain structures – e.g.,
functionally important tertiary motifs – may be obtained.
Random variation in values of features found important in
distinguishing different types of structural folds (e.g., Table 6)
would provide computationally simpler techniques than
molecular dynamics for simulation of protein tertiary folds
and would also help in testing the empirical hypotheses on
this yet un-deciphered phenomenon. We shall report some
results in this regard subsequently.

Multi-class logistic regression has been extensively used
in wide-ranging applications including medical- and bio-
informatics and immunology (e.g., [25, 26]). Here it
provides a computationally feasible and predictive method

Table 15 Coefficients (components of vectors βj in model-equation (1) for jth class) of the PCs; and the intercept (αj)

Class Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7

Alpha −0.661 0.065 0.897 0.542 −1.498 −0.872 1.418 0.359

Beta −0.18 0.164 −0.379 0.476 0.111 −0.711 −0.385 −2.099
Alpha/Beta 0.097 0.232 0.059 0.082 −1.184 −1.637 0.141 −2.038

Table 16 Average accuracy parameters (in %): True positives (TP),
false positives (FP) & area under ROC- curve (AROC)

Class TP FP AROC

All Alpha 59.6 12.5 83.7

All Beta 67.8 16.8 82.6

Alpha/Beta 57.7 18.5 77.4

Alpha+Beta 69.5 5.2 88.7

J Mol Model (2012) 18:2741–2754 2749



of classifying protein structural families. It is remarkably
simpler in computation than the methods of structural
homology used to distinguish between structurally similar
and dissimilar proteins. Another significant importance of
this method lies in the fact that we can assign confidence
levels of accuracy to predictive classifications and also to
class-definition in terms of the feature vectors.

Our results for classification between four major structural
classes, with (i) common fold types representing a class; and
also for (ii) different fold-types within a class, are excellent in
terms of overall accuracy of classification and area under
ROC. Often in predictive applications, there is compromise
between true positives and false positives. AROC — area
under the receiver operating characteristic curve (ROC)
provides a comprehensive measure of reliability and consis-
tency of a predictive method or model [27, 28]. The models
fitted here for classification into one of the four structural
classes and those for further discrimination among different
fold types within a class are found to be good in terms of this
criterion. The corresponding regression models can be used
in predictive application to classify any new protein.

Further, the present study strengthens the possibility of
deploying similar quantitative modeling to predict function-
ally important structural motifs or functional sites in proteins.
We have used it to infer the presence and location of certain
functional sites in new or predicted structures of proteins [29].
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Appendix

List of proteins referred to in section “Materials and methods”
(a) pdb ids of the 225 proteins in the data set referred in

section “Data set for common structural fold within a class”

All Alpha All Beta Alpha/Beta Alpha+Beta

1aoy 1a3r 1a4m 1ab8

1b9m 1b4r 1aj2 1afj

1bby 1bww 1b5t 1aop

1bia 1cf1 1bd0 1b64

1bja 1cvr 1bqg 1cg2

1bl0 1dqi 1ccw 1dur

1bm9 1ehx 1ct5 1ekr

1cf7 1ex0 1d8c 1f0x

1d8j 1ex0 1d8w 1f3v

1dp7 1f00 1dbt 1f9y

1e17 1gof 1dos 1feh

1e3h 1gyv 1dxe 1ffg

All Alpha All Beta Alpha/Beta Alpha+Beta

1ef4 1i8a 1e4m 1fi4

1etx 1ifr 1eep 1ftr

1fc3 1im3 1egv 1fvg

1fli 1jz8 1ejx 1gmu

1fp1 1kmt 1ezw 1gpj

1fse 1kyf 1f6y 1h72

1fsh 1l6p 1fcq 1hbn

1g3w 1lla 1frb 1hbn

1gvd 1lmi 1gkp 1hw8

1hc8 1m1x 1h41 1i19

1hcr 1msp 1hl9 1i1g

1hks 1n9p 1i0d 1in0

1hlv 1nci 1i60 1iuj

1hst 1nep 1itu 1ivz

1hw1 1o6v 1j5s 1j27

1i1g 1o75 1j6o 1j5e

1i27 1osy 1j79 1jmt

1i5z 1p7h 1jfx 1k47

1if1 1pby 1jqn 1kkh

1ign 1pl3 1jub 1kn6

1irz 1q0e 1k77 1koh

1ixc 1qfh 1kbl 1kp6

1ixs 1r4x 1lt8 1l3k

1j5e 1roc 1luc 1lou

1jgs 1svb 1m5w 1lq9

1jhf 1tza 1n8f 1lxn

1jhg 1u2c 1nfp 1m1h

1k6y 1uad 1nqk 1mg7

1k78 1ug9 1nth 1mla

1kqq 1v8h 1nvm 1mli

1ku9 1vca 1o1z 1mwq

1l8q 1vca 1ob0 1nh8

1ldd 1xak 1ohl 1nue

1lva 1xo8 1olt 1nxi

1mkm 2a9d 1onw 1nza

1mzb 2b20 1oy0 1o51

1o57 2c9q 1p1m 1o8b

1ofc 2dpk 1p1x 1oy8

1okr 2h7w 1pbu

1opc 2hft 1pca

1oyw 2j2z 1phz

1p7i 2mcm 1pie

1pp7 4kbp 1pys

1q1h 1q4r

1r1t 1q5y

1r71 1q8b

1r7j 1q8k

1rep 1qd1
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(b) SCOP ids of the 225 proteins listed in the above Table

All Alpha All Beta Alpha/Beta Alpha+Beta

d1aoya__16087.pdb d1a3rl2_20890.pdb d1a4ma__29014.pdb d1ab8a__39414.pdb

d1b9ma1_16118.pdb d1b4ra__22072.pdb d1aj2a__29665.pdb d1afja__39338.pdb

d1bbya__16149.pdb d1bwwa__20518.pdb d1b5ta__29676.pdb d1aopa1_39501.pdb

d1biaa1_16083.pdb d1cf1a1_21907.pdb d1bd0a2_28642.pdb d1b64a__39306.pdb

d1bjaa__16122.pdb d1cvra1_21949.pdb d1bqga1_29217.pdb d1cg2a2_39360.pdb

d1bl0a1_16053.pdb d1dqia__22357.pdb d1ccwb__29646.pdb d1dura__38943.pdb

d1bm9a__16116.pdb d1ehxa__21950.pdb d1ct5a__28663.pdb d1ekra__39380.pdb

d1cf7a__16151.pdb d1ex0a1_90465.pdb d1d8ca__29325.pdb d1f0xa1_39483.pdb

d1d8ja__16153.pdb d1ex0a2_90466.pdb d1d8wa__29394.pdb d1f3va__39382.pdb

d1dp7p__16159.pdb d1f00i1_22368.pdb d1dbta__28539.pdb d1f9ya__83249.pdb

d1e17a__16143.pdb d1gofa1_21807.pdb d1dosa__29175.pdb d1feha3_38998.pdb

d1e3ha1_16257.pdb d1gyva__70790.pdb d1dxea__29310.pdb d1ffgb__39384.pdb

d1ef4a__16272.pdb d1i8aa__61951.pdb d1e4mm__59226.pdb d1fi4a2_59848.pdb

d1etxa__18978.pdb d1ifra__71203.pdb d1eepa__28636.pdb d1ftra1_39485.pdb

d1fc3a__16237.pdb d1im3d__62568.pdb d1egva__29652.pdb d1fvga__39408.pdb

d1flia__16160.pdb d1jz8a1_67830.pdb d1ejxc2_83185.pdb d1gmua2_65336.pdb

d1fp1d1_59939.pdb d1kmta__77442.pdb d1ezwa__29558.pdb d1gpja3_65453.pdb

d1fsea__60000.pdb d1kyfa1_73220.pdb d1f6ya__29673.pdb d1h72c2_60713.pdb

d1fsha__60006.pdb d1l6pa__73626.pdb d1fcqa__65006.pdb d1hbna2_60899.pdb

d1g3wa1_65133.pdb d1llaa3_21861.pdb d1frba__28665.pdb d1hbnc__60902.pdb

d1gvda__83338.pdb d1lmia__78098.pdb d1gkpa2_70232.pdb d1hw8a1_61298.pdb

d1hc8a__70963.pdb d1m1xa1_74422.pdb d1h41a1_83472.pdb d1i19a1_61522.pdb

d1hcra__16020.pdb d1mspa__22333.pdb d1hl9a2_90651.pdb d1i1ga2_65983.pdb

d1hksa__16172.pdb d1n9pa__80343.pdb d1i0da__61487.pdb d1in0a1_83694.pdb

d1hlva1_65854.pdb d1ncia__22191.pdb d1i60a__71118.pdb d1iuja__90701.pdb

d1hsta__16140.pdb d1nepa__80440.pdb d1itua__71423.pdb d1ivza__76863.pdb

d1hw1a1_16111.pdb d1o6va1_81099.pdb d1j5sa__71580.pdb d1j27a__90778.pdb

d1i1ga1_65982.pdb d1o75a1_81117.pdb d1j6oa__77088.pdb d1j5ej__71553.pdb

d1i27a__61555.pdb d1osya__93502.pdb d1j79a__62675.pdb d1jmta__63180.pdb

d1i5za1_83669.pdb d1p7hl1_94271.pdb d1jfxa__62943.pdb d1k47a2_72041.pdb

d1if1a__16183.pdb d1pbya3_94419.pdb d1jqna__77159.pdb d1kkha2_72646.pdb

d1igna1_16048.pdb d1pl3a__88158.pdb d1juba__90908.pdb d1kn6a__72770.pdb

d1irza__76772.pdb d1q0ea__95504.pdb d1k77a__72096.pdb d1koha2_68720.pdb

d1ixca1_83764.pdb d1qfha1_21893.pdb d1kbla1_68384.pdb d1kp6a__39397.pdb

d1ixsb1_76933.pdb d1r4xa1_97054.pdb d1lt8a__78186.pdb d1l3ka1_73539.pdb

d1j5er__71561.pdb d1roca__97673.pdb d1luca__29547.pdb d1loua__39323.pdb

d1jgsa__66683.pdb d1svba1_21814.pdb d1m5wa__84836.pdb d1lq9a__78129.pdb

d1jhfa1_63057.pdb d1tzaa__107468.pdb d1n8fa__85397.pdb d1lxna__84737.pdb

d1jhga__19009.pdb d1u2ca1_107610.pdb d1nfpa__29555.pdb d1m1ha2_78416.pdb

d1k6ya1_68239.pdb d1uadc__88379.pdb d1nqka__92050.pdb d1mg7a2_84955.pdb

d1k78a1_68255.pdb d1ug9a3_99363.pdb d1ntha__80730.pdb d1mlaa2_39383.pdb

d1kqqa__72885.pdb d1v8ha1_119870.pdb d1nvma2_86250.pdb d1mlia__39070.pdb

d1ku9a__77544.pdb d1vcaa1_21649.pdb d1o1za__86555.pdb d1mwqa__91481.pdb

d1l8qa1_77809.pdb d1vcaa2_21685.pdb d1ob0a2_81257.pdb d1nh8a2_80508.pdb

d1ldda__73841.pdb d1xaka__115037.pdb d1ohla__87035.pdb d1nuea__39076.pdb

d1lvaa1_74276.pdb d1xo8a__115698.pdb d1olta__93334.pdb d1nxia__86381.pdb

d1mkma1_79242.pdb d2a9da1_126431.pdb d1onwa2_87173.pdb d1nzaa__86444.pdb
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(c) pdb ids of the proteins in the data set referred to in section
“Data set for different structural fold types within a class”

Codes of the fold types are as in SCOP (c.f. Table in
section “Data set for different structural fold types within a
class” for names)

All distinct structural domains (found in SCOP) of the
type listed here were used in the study. Therefore no

separate list with SCOP ids of those is given here.
Sequential homology between most pairs is <20%. How-
ever, in some pairs within a subclass (e.g., in a.207) it is
greater than 45%, common domains of both members of
such pairs were not used simultaneously in training or
validation samples.

All Alpha All Beta Alpha/Beta Alpha+Beta

d1mzba__91497.pdb d2b20a1_127685.pdb d1oy0a__87543.pdb d1o51a__92480.pdb

d1o57a1_92483.pdb d2c9qa1_130138.pdb d1p1ma2_87697.pdb d1o8ba2_81181.pdb

d1ofcx2_92827.pdb d2dpka1_131616.pdb d1p1xa__104060.pdb d1oy8a1_87563.pdb

d1okra__93269.pdb d2h7wa1_136225.pdb d1pbua__88030.pdb

d1opca__16231.pdb d2hfta1_21951.pdb d1pcaa1_39063.pdb

d1oywa1_93760.pdb d2j2za1_137974.pdb d1phza1_39358.pdb

d1p7ia__94279.pdb d2mcma__22207.pdb d1piea2_94707.pdb

d1pp7u__94973.pdb d4kbpa1_22345.pdb d1pysb4_39310.pdb

d1q1ha__95580.pdb d1q4ra__95823.pdb

d1r1ta__104769.pdb d1q5ya__95950.pdb

d1r71a__104823.pdb d1q8ba__96201.pdb

d1r7ja__104836.pdb d1q8ka2_104557.pdb

d1repc1_16125.pdb d1qd1a1_39493.pdb

All Alpha All Beta

a.207 a.51 a.8 a.7 b.51 b.1 b.71 b.80
1A17 1C3Y 1B1B 155C 1CPN 1CCZ 1A1D 1A7S

1BC9 1DGU 1C20 1A8C 1DYK 1CDY 1A62 1BIO

1DVP 1EH2 1E17 1C2N 1DYP 1CID 1BKB 1BRU

1EYH 1EXR 1IUF 1C52 1FNY 1E5U 1BR9 1BT7

1HH8 1FPW 1JGS 1C53 1GBG 1ESO 1D2B 1CQQ

1HXI 1GGW 1KN5 1C6R 1GNZ 1F2Q 1FL0 1DPO

1JWF 1HQV 1MGT 1C6S 1GV9 1FHG 1H9K 1EAX

1KLX 1IQ3 1MIJ 1C75 1GZC 1FNL 1I40 1ELT

1LKV 1JFK 1MZB 1CC5 1H9P 1HNF 1J6Q 1EUF

1LRV 1K95 1QNT 1CCR 1J1T 1I8A 1JB3 1EXF

1N8U 1LKJ 1R36 1CO6 1KS5 1IAM 1K0S 1GVZ

1NZN 1NCX 1RI7 1COR 1LED 1IJ9 1KHI 1H4W

1OXJ 1NX2 1RR7 1COT 1LU1 1JBJ 1KL9 1HJ8

1PAQ 1NYA 1RYU 1CTJ 1MVE 1JCV 1KRS 1HJ9

1PC2 1OOI 1S7E 1CXC 1MVQ 1JPE 1KXL 1K2I

1Q2Z 1PUL 1V3F 1CYJ 1NLS 1MFM 1Q46 1KXB

1R8M 1Q80 1WJ5 1E29 1O4Y 1OAL 1SNC 1LO6

1RW2 1QV1 1XCV 1E8E 1OA4 1OLL 1SR3 1MZA

1RZ4 1RRO 1XD7 1F1F 1OLR 1OP4 1TWL 1NN6

1TE4 1S3P 1YG2 1FI3 1S2B 1ROC 1UAP 1OP0
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All Alpha All Beta

a.207 a.51 a.8 a.7 b.51 b.1 b.71 b.80
1WY6 1S6I 1Z91 1GDV 1SBF 1TEY 1WI5 1OS8

1XT0 1SL8 2AXL 1GKS 1UAI 1UFG 1WJJ 1P3C

1Y6I 1SNL 2BV6 1HRC 1UX6 1UGN 1X6O 1PQ7

1Y8M 1SRA 2COM 1I6D 1ZA4 1WG3 1XWE 1QNJ

1Z3X 1TUZ 2CSO 1I8O 2A6Y 1WIC 2B29 1QTF

1ZU2 1UHN 2CYY 1JDL 2A6Z 1XMW 2EIF 1RJX

2BF0 1WLM 2E34 1KX7 2AFJ 1XO8 2JA9 1SI5

2D2S 2JPO 2ESH 1LS9 2AYH 1ZXQ 2K5W 1T32

2I9C 2P71 2F5C 1MZ4 2C9A 2CU9 2PRD 1TON

2ION 2PAS 2FBH 1YCC 2ERF 2DPK 2TMP 2A31

2NSZ 2PVB 2FBI 2AI5 2NLR 2FCB 3TSS 2CXV

2O8P 2SAS 2IPQ 2C8S 2FWU 2H5C

5PAL 2OD5 2DVH 2MFN 2RG3

2V7F 3C2C 2SFA

2V9V 451C 2SGA

2VQC 5CYT

Alpha/Beta Alpha+Beta

c.27 c.77 c.68 c.1 d.30 d.34 d.300 d.129

1AHN 1CXQ 1A2J 1A53 1A5R 1CEW 1A06 1FJ7

1B1A 1EH6 1BED 1CT5 1B9R 1EQK 1FOT 1J27

1CZN 1EO1 1HD2 1EDT 1E9M 1G96 1GZK 1LXJ

1DCF 1HYV 1I5G 1GQN 1EF5 1KWI 1HOW 1NO8

1DZ3 1I39 1J9B 1HW6 1GNU 1NNV 1LUF 1NZA

1EIW 1IO2 1KNG 1I60 1L2N 1Q7H 1M2R 1P1L

1F4P 1J9A 1LU4 1J5T 1MG4 1ROA 1OEC 1P1T

1FUE 1JL1 1O73 1J6O 1MJD 1SJW 1P14 1Q8B

1FYV 1MGT 1O8X 1JCM 1RAX 1SQW 1PME 1RIS

1FYX 1O13 1ON4 1K77 1RRB 1TP6 1R0P 1S79

1H05 1O1W 1PQN 1KM4 1TTN 1TUH 1RE8 1SJQ

1ID8 1OVQ 1QGV 1LYX 1UF0 1Z1S 1RJB 1UKU

1J56 1OVY 1SEN 1MXS 1V2Y 2A15 1S9J 1URR

1JBE 1P90 1UN2 1N55 1V5O 2CW9 1T46 1WEX

1M2E 1QNT 1V9W 1NFP 1WE6 2CX1 1UU3 1WEY

1MB3 1RDU 1WPI 1O1Z 1WE7 2FXT 1UV5 1WEZ

1MVO 1RIL 1XVQ 1OM0 1WF9 2GU3 1VJY 1WG5

1NAT 1SFE 1Z6M 1QWG 1WFY 2I9W 1VZO 1WI8

1NNI 1W0H 1Z6N 1SFS 1WGH 2K54 1XJD 1X4D

1P6Q 1WLJ 1ZZO 1THF 1WGK 2RFR 1XKK 1X5S

1QCZ 1YF5 2A2P 1TPE 1WGY 2STD 1XWS 1X5U

1QKK 1ZBF 2A4H 1U5H 1WI0 3B7C 1YWN 1XER

1RCF 1ZBS 2A4V 1U83 1WJ6 3CPO 1ZYL 2CPH

1RLJ 2ETJ 2B5X 1UJP 1WX7 3CU3 2B1P 2CQ0

1TMY 2GUI 2CVB 1VD6 1WXA 3DM8 2JFL 2CQ1

1YKG 2GUP 2DJK 1VPQ 1WZ0 3E99 2OJ9 2CQ3

2A9O 2HST 2DLX 1VZW 1X1M 3EBT 2PPQ 2CQB

2AYY 3E9L 2FWH 1XWY 1XO3 3EBY 2QHN 2CQG

2AYZ 3E9O 2FY6 1ZZM 1YJI 3EJV 2RG6 2CQI

2B4A 2GZP 2HVM 2BYE 3EN8 3BQC 2IVY

2C4V 2H01 2PLC 2BYF 8CHO 3C1X 2K3K
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5NUL 2IDY
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