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Abstract Predictive classification of major structural families
and fold types of proteins is investigated deploying logistic
regression. Only five to seven dimensional quantitative
feature vector representations of tertiary structures are found
adequate. Results for benchmark sample of non-homologous
proteins from SCOP database are presented. Importance of
this work as compared to homology modeling and best-
known quantitative approaches is highlighted.
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Introduction

Structural classification of proteins helps deciphering their
evolutionary connections and local and tertiary fold
relationship between them. Several databases in public
domain exist which perform this classification at various
hierarchical levels, with different objectives. Principal
among them are the SCOP [1] and CATH [2] databases.

R. R. Joshi (D<)

Department of Mathematics,

Indian Institute of Technology Bombay,
Powai,

Mumbai 400076, India

e-mail: rrj@iitb.ac.in

P. R. Panigrahi
Biochem Sci Group, National Chemical Laboratory,
Pune, India

R. N. Patil

Department of Chem. Engg, Indian Institute of Technology
Bombay,

Mumbai, India

Computational modeling of protein structures using quan-
titative data structures offers efficient, cost-effective applica-
tions for classification as well as characterization of protein
structures, analysis of protein structure-function correlations
and understanding of protein structural genomics. Quantitative
data structures found computationally feasible in wide-ranging
applications of this kind mostly consists of feature vectors,
trees, and graphs. While tree or graphs are of direct applications
in homology mapping and/or computer aided analysis of
molecular recognition, protein binding and functional inter-
actions (e.g., [3-6]), computing with these is more complex
and often requires special data mining algorithms and tools as
compared to feature vector representation.

Quantitative feature vectors are computationally the
simplest data structures. These are also most suitable for
applications of theoretically sound statistical data mining
techniques. Representation of fixed size segments of
protein sequences as quantitative feature vectors has been
useful in phylogenic classification and secondary structure
analysis of proteins and has also offered applications in ab
initio prediction of tertiary structure [7—11].

Chi et al. [12, 13] have used 25-dimensional feature
vector for fast protein structure retrieval and fold classifi-
cation. We have attempted structural classification at the
first level of the hierarchy in SCOP considering the local
and global quantitative features used by them. Sequential as
well as structural similarity is important in homology
modeling. In view of this, we considered also incorporating
some sequential features which are not a linear combination
of the features used by Chi et al., yet which are of the same
‘type’ in the sense that it pertains to geometry and does not
explicitly require the knowledge of which amino acids are
there in the sequence and in what order, etc.

Length of a protein sequence is simplest if its linear
geometrical features satisfying the above criterion. Our earlier
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studies on ab initio prediction of protein tertiary structure using
only the primary sequence have shown this feature as a
statistically significant variable in correlation of the inter-
residue distances in primary and tertiary structures of proteins
[10, 14]. Moreover, inclusion of this feature does not increase
the complexity of computing the feature-vector, so we have
included it along with the features used by Chi et al [12, 13].

Principal component analysis is carried out to get
descriptors of these features collectively in a reduced dimen-
sional space. Multi-class logistic regression is then applied to
provide possible application for predictive classification. The
results show significance of specific features in characterizing
specific structural families of proteins, and also in identifying
different types of folds within a family (class).

Materials and methods: quantitative feature vector
representation and analysis

We represent a structured protein as a data point in a 26-
dimensional feature space. These 26 features are listed in
Table 1. Length of protein sequence, listed as the first

Table 1 Serial numbers, as successive components of the feature
vector X, of features are shown as “1)”, “2)”, etc. in this table. Local
feature numbers 2 to 17 are histogram features and global features 18
to 26 are fexture measures of pixel matrix. The abbreviations in
parenthesis for each feature are used throughout the text

Features

Local Global

16 Histogram feature
Band1
2) Histogram [1, 1] (H1)
3) Histogram [1, 2] (H2)
4) Histogram [1, 3] (H3)
5) Histogram [1, 4] (H4)
Band2
6) Histogram [2, 1] (H5)
7) Histogram [2, 2] (H6)
8) Histogram [2, 3] (H7)
9) Histogram [2, 4] (HS8)
Band3
10)Histogram [3, 1] (H9)
11)Histogram [3, 2] (H10)
12)Histogram [3, 3] (H11)
13)Histogram [3, 4] (H12)
Band4
14)Histogram [4, 1] (H13)
15)Histogram [4, 2] (H14)
16)Histogram [4, 3] (H15)
17)Histogram [4, 4] (H16)

1) Length (Len)

9 Texture measure

Orderliness group

18) Maximum probability (Mxpr)
19) Uniformity Of energy (Ener)
20) Entropy (Entr)
Contrast group

21) Homogeneity (Homo)

22) Contrast (Cont)

23) Dissimilarity (Dis)

24) Inverse difference moment (Idm)
Statistical group

25) Cluster tendency (Clust)

26) Correlation (Cor)
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global feature in this table, is computed as the number of
amino acids in the primary sequence. The remaining 25
features are as defined by Chi et al. [12]. These incorporate
features of geometrical model as well as stereochemical
nature of a protein’s tertiary structure.

As no web-server or software is available for computing
these features, we have developed our own programs on
Linux platform to compute these features, as described in Chi
et al. [12]. The names and notations of these features are
retained as in their paper. Among these, there are a total of
16 local features (histogram features) and the remaining nine
are global features that are measured as texture measures. All
these computed from the pixel matrix of inter-residue
distances. If only specific (structural) domain of a protein is
under consideration then the feature vector is computed only
for that portion.

Pixel Matrix Pair-wise Euclidean distances between the
coordinates of the backbone residues of the protein under
consideration are computed. (This matrix is symmetric with
diagonal elements as zeros. So, only its upper or lower triangle
is computed). This inter-residue distance matrix is converted
into a Pixel Matrix where distances are converted to 32 gray
levels: minimum distance = 0 and maximum distance = 31
pixels.

The 16 local (histogram) features are obtained as follows.
The pixel matrix is partitioned diagonally into four band-strips
as illustrated in Fig. 1. In each band, four local features are
computed as relative frequencies of inter-residue distances in
the (pixel) ranges 0 to 7; 8 to 15; 16 to 23; and 14 to 31.

The nine global features are calculated as texture
measures of the pixel matrix; these are defined as functions

1 n n 3n n
4 2 4
«— Band!1
n
4
«—Band 2
n
2
le—Band3
3n
4
le— Band 4
n

Fig. 1 Illustration of four bands in an nXn pixel matrix; values above
the top horizontal boundary indicate column nos; and those on the left
of 1st vertical boundary denote the row nos. Pixel at ith row, jth
column corresponds to distance between ith & jth residues
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Table 2 Cumulative percentage of variance contributed by the first
five PCs in different classes

All Alpha All Beta Alpha/Beta Alpha+Beta
PC 1 49.21 45.60 48.90 41.80
PC2 15.49 17.41 15.31 25.07
PC 3 11.11 10.67 10.57 10.55
PC 4 6.23 7.41 8.10 6.11
PC5 3.54 4.88 5.17 2.69
Total 85.58 85.97 88.05 86.22

of the spatial variation in pixel intensities (gray levels).
These are computed using the gray level co-occurrence
matrix (GLCM), which explains the distribution of a pairs
of gray levels in the pixel matrix. The (i, j)th element of the
GLCM denoted by P(d, 6) is computed as the number of
times the gray level i and j are separated by distance ‘d’
with direction ‘0’ in the pixel matrix. In our computations,
we have taken d=1 and 0=(0, 45, 90, 135, 180, 225, 270,
315). We thus obtain eight GLCM matrices in total.

The desired nine texture measures are computed using
the formula given in Chi et al. [12]. Our computer program

to calculate the feature vector may be obtained from the
corresponding author.

Pixel matrix and local structural folds Pair-wise distances
between C, backbone residues are of key importance in
determination or prediction of protein structures — espe-
cially the secondary structure and local folds of the tertiary
structures [15]. The ab initio methods of prediction of
protein tertiary structure from primary sequence extensively
rely upon inter-residue distances. Conventional statistical
estimates of the lower and upper bounds on inter-residue
distances in alpha-helix, beta sheets, and coils obtained
from large samples, are often useful for short range span:
For example, if amino acid a primary sequence positions ‘7’
and ‘> are both part of an alpha helices fold in the tertiary
structure then the distance dj; (i.e., distance between them in
3-dimensional Euclidean space) between them would
satisfy, dj; € [4.5, 7.5] if j is 3rd or 4th neighbor of ‘i’ on
the primary sequence, etc. However, no such estimates are
available for medium or long-range spans in general, e.g.,
for j>i+20, etc. Different methods deploy different
approaches to compute/estimate or otherwise incorporate
inter-residue distances; for example, lattice models [16],

Fig. 2 The bar-diagrams 10 a 10 — b
correspond to the data from
class (a) All Alpha; (b) All Beta,
(¢) Alpha/Beta; and (d) Alpha 8 — 8 -
+Beta. In each diagram, labels,
1, 2, ..., etc on the X-axis denote
the successive principal 6 6 —
components PC1, PC2, ....etc.
The Y-axis shows eigenvalues of
covariance matrix of the 26 4 — 4
dimensional feature vector. A
horizontal line is drawn at
eigenvalue=1 for clear 2 2
indication of the fact that in each 1 1
[ i,
corresponding to the first five 0 * 0 =
PCs is >1. In most cases the ! 5 9 14 19 24 ! 5 9 14 19 24
eigenvalues corresponding to
PC16 onward are negligible 10— C d
10 —
8 —
8 —
6 —
6 —
4 — 4
2 — 2
1 l 1
0 | ,“lllll-l 0 Illlllnl.
1 5 9 14 19 24 1 5 9 14 18 24
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Table 3 The features that were found important in terms of
statistically significant (confidence level >90%) correlation with the
first three” PCs are listed here for the data described in section “Data
set for common structural fold within a class”; abbreviated names of

features are as in Table 1. (*correlation with other PCs are not found
significant). Magnitude of correlation coefficient in each case is >0.75.
Superscript ‘(—)’ indicates that its sign is negative

Class Significant features

All Alpha H2, H57, H9, H10, Ener, Entr'”, Homo, Cont™, Dis, Idm, Cor

All Beta Len®, H1O, H5O, H9, Ener”, Entr, Homo ", Cont, Dis, Idm*, Cor""

Alpha/Beta H1, H8, H9, H10 O, Hll(f), H12, H13, Ener, Entr, Homo, Cont(f), Dis, Idm, Cor, Mxpr
AlphatBeta Len®, H1O, H2O, H8C), H9, H10, H12, H16, Mxpr, Ener”, Entr, Homo”, Cont, Dis, Idm"”, Clust, Cor"

threading [17], and/or nonparametric statistics and
knowledge-based heuristic [10].

The bands in pixel matrix incorporate important informa-
tion on inter-residue distance distribution in certain structural
folds. In view of the earlier studies [18], if the pixel matrices
of alpha helices in proteins of length n are aligned then there
will be maximal alignment and matching in the segments (in
one or more of the four bands) that are close and parallel to
the diagonal. Thus, for Aelices of length < n / 4, the value of
feature H1 will be almost the same in all the corresponding
feature-vectors and H2 may also have small variance in any
sample of these feature-vectors.

For parallel beta sheets the aligned portions of pixel
matrices would be away from the diagonal in the bands
corresponding to the size of the sheet. Thus, for example,
features like H4 and H8 and may be H3, H7 would have small
variances in the sample of feature-vectors of parallel beta sheets
of length greater than n/4 and<n/2. Alignment of inter-residue
distances for anti-parallel beta sheets would span across
segments perpendicular to the diagonal of their superimposed
pixel matrices. These segments would be spread across one or
more bands depending upon the length of the anti-parallel
beta sheets. Thus, the distribution of pixels and the angle
between the farther ones in these segments would be similar
across the motifs (aligned portions) of such sheets.

In essence, the length of protein, 16 histogram-features,
and fexture measures depending upon ‘d ’ and the direction
angle ‘0 ° of corresponding GLMCs P(d, 6 ), would
collectively extract the secondary structural (local) folds of
different types and sizes and their relative and interactive
positions in the tertiary structural domains.

Structural classes and fold types

We focus on classification of protein tertiary structures in four
major families — A/l Alpha, All Beta, Alpha/Beta and Alpha+
Beta. Introduction to these structural folds with illustrative
graphics may be found in [15] and in structural domain
definitions of SCOP database (http://scop.mrc-Imb.cam.ac.uk/
scop/). We have carried out quantitative representation and
analysis in both the cases — (i) classification among these
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four classes (families) while considering protein domains
having common fold types within a class; (ii) classification
while allowing different structural folds within each class.

Data set for common structural fold within a class

Considering that SCOP database does finer structural
classifications at different fold levels and is also the basis/
yardstick of test of the work reported by Chi et al. [13], we
have considered structural families and fold types of protein
(domains) as identified in this database. For exhaustive
search we randomly selected maximum possible number of
high-resolution structures of proteins the structural domains
of which are authenticated in SCOP such that a comparable
number of non-redundant observations are available from
each of the four classes of interest and such that samples
from each class will contain different possible sizes and
orientation of the structural domain it represents.
Development of any data-mining algorithm for predictive
applications requires the data set to be bias-free. Considering
this, from among the randomly selected set we have chosen a
sample of 225 proteins, which are mutually non-homologous
[1]. List of these with indication of specific chains and
structural domains as tagged in SCOP is given in the
Appendix. Pair-wise sequential homology between these was
tested using ClustalW program [19] and is found to be less
than < 25% with most pairs having less than 18% identity.

Table 4 Coefficients (i.e., components of vectors J3; in model-Eq. 1
for jth class ) of the PCs, and intercept (o), in logistic regression
model

Regressor variable Class
All Alpha All Beta Alpha/Beta

PC1 —0.3822 0.2904 1.5661
PC2 -1.1679 0.6538 —6.2338
PC3 —0.6 1.7431 1.8762
PC4 2.3261 —1.3407 2.4824
PC5 2.291 —0.0603 4.3087
Intercept 1.4423 —2.3951 —-13.519
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Table 5 Average accuracy parameters (in %): True positives (TP),
false positives (FP) and area under the RO- curve (4roc)

Class TP FP Aroc
All Alpha 75.7 16.1 88.5
All Beta 69.6 19.4 71.6
Alpha/Beta 79.7 8.3 89.7
Alpha+Beta 70.4 16.2 76.5

Common fold types within the classes of interest are: fold
“a.4” of class All Alpha ; fold “b.1” of class All Beta ; fold
“c.1” of class Alpha/Beta and fold “d.58” of class Alpha+ Beta.

A Jackknife type technique is applied for optimal
training and cross-validation [20, 21]. In each experiment,
a random subset of the above described set of 225 proteins
is used as the ftraining sample and the remaining as
validation. Everytime, the training sample has about 40
representatives from each class.

Data set for different structural fold types within a class

We have extended the above work on different folds within
each class. This data set consists of vectors of about 30-35
proteins from each major fold type in each class. A list of
these is also given in the Appendix. Structural domains
satisfying non-homology at sequential levels and different
structural fold types (as identified in SCOP database) are
considered. The following are the different fold types
chosen from the four classes of interest.

Class Fold types considered in our study

All Alpha Alpha Alpha Superhelix (a.207); EF
hand like (a.51); DNA/RNA 3 helical (a.8);
Cytochrome ¢ (a.7);

All Beta Concanavaline (b.51); Immunoglobin like
(b.1); OB folds (b.71); Trypsin like serine
protease (b.80)

Alpha/Beta Flavodoxin (c.27); Ribonuclease H like (c.77);

Thioredoxin (c.68); Tim beta (c.1)

Beta grasp (d.30); Cystatin like (d.34); Protein
kinase (d.300); Ferredoxin (d.129)

Alpha + Beta

Table 6 The features that were found important in terms of
statistically significant (confidence level>90%) correlation with the
first three” PCs are listed here for the data described in Sect. “Data set
for different structural fold types within a class”; abbreviated names of

We consider classification into different fold types within
each structural class. This is further extended on a combined
sample for classification among the four classes, using an
equal number of observations on each type of fold from a class
as representative of that class.

Quantitative representation and dimensionality reduction

The 26 features listed in Table 1 are computed for the
chosen dataset using our programs [22, 23] on Linux
platform with the support of bio3d utility of R-software.
Principal component analysis (PCA) is then applied to
reduce dimension of the 26-dimensional feature vector.

Principal component analysis (PCA)

Dimensionality reduction is most sought of in mining,
analysis and applications of multidimensional data. PCA is
a theoretically sound method that offers dimensionality
reduction while also preserving all the significant informa-
tion contained in the original data. It is a method of
dimensionality reduction in multivariate statistics that
transforms a number of possibly correlated variables into
a smaller number of mutually uncorrelated variables called
principal components. The k principal components of a k-
dimensional feature vector X are obtained by orthogonal
linear transformation: ith principal component of )_(=(1i)T
X; where superscript ‘T denotes transpose of a vector; v;
denotes the eigenvector corresponding to the ith (in
descending order of magnitude) eigenvalue of the covari-
ance matrix of X.

Multivariate statistics theory [24] shows that the first
principal component captures maximum variability in the
data, followed by the second principal component and so on.
So, the first few principal components would provide most
of the useful information contained in any random sample of
observations on X. Thus, for further application, instead of
using k-dimensional vector X we may use a k -dimensional
vector (k" <k) of the first kK~ principal components of X

As presented in section “Results” below, in our study use
of only the first five (i.e., kX =5) principal components of

features are as in Table 1. (“correlation with other PCs are not found
significant). Magnitude of correlation coefficient in each case is >0.75.
Superscript ‘(—)” indicates that its sign is negative

Class Significant features

All Alpha HI, H2, H5O, H6O, H9O), H10, H11, Mxpr, Ener, Entr™, Homo, Cont™, Dis™, Idm, Clust, Cor

All Beta H1, H2, H5O, H11O, H120), Mxpr, Ener, Entr”, Homo, Cont”, Dis”, Idm, Clust, Cor

Alpha/Beta Len, H1O, H2O, H3O, H5, H9, H10, H11, H14, H16, Mxpr(f), Ener”, Entr, Homo ", Cont, Dis, Idm
Alpha+Beta Len, H1O, H3O, H8C), H9), H11, H12, H13, H14, Mxpr"’, Ener”, Entr, Homo ", Cont, Dis, Idm™, Clust, Cor™
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Table 7 Estimates of intercept and coefficients (J; for jth PC) for different fold types in the structural class A/l Alpha. Fold type Cytochrome-C is

used as a reference in logistic regression model

Fold type Intercept PCl1 PC2 PC3 PC4 PCs PC6 PC7

Alpha Alpha superhelix 15.172 =7.716 4.1634 1.1664 —3.479 3.5792 2.882 —4.077
EF hand like 18.233 —6.812 3.3299 2.0851 —2.852 2.048 2.398 —4.273
DNA/RNA 3 helical 18.448 —6.605 2.8673 2.5311 —2.704 1.4128 2.620 —4.111

the 26-dimenstional feature vector of protein-structure is
found adequate.

Relation of PCs with original descriptors

There need not be a one-to-one correspondence between
an original feature and a principal component. By
definition, every principal component being a linear
combination of original features would represent their
combined effect. First few principal components, which
explain maximum variability (and hence the information
content) of the data would capture the joint effect of the
important features and thus preserve the collective role of
original descriptors more efficiently.

In section “Materials and methods” we have highlighted
the importance of pixel matrix and hence the feature vectors
vis-a-vis the protein’s secondary structural folds. While
some individual histogram features might capture the
signature (motif) of an alpha helix or beta sheet of specific
lengths, the anti-parallel beta sheets require several global
features as well. As a single protein could have several
local folds of varied sizes at different positions, collective
role of all the features is essential to represent these. Even if
single structural domains per protein are considered, there
would be diversity of sizes and relative positioning across
the training sample from which the characteristic of a class
is to be extracted.

Therefore, the projection of original data into a
reduced dimensional space is required to be such that
the collective role of all the features is reflected.
Principal component analysis fulfils this requirement with
an additional advantage that the sign and magnitude of the
correlation coefficients of different features with a princi-
pal component also reflect their relative importance in
representing the data.

Classification using multi-class logistic regression

Consider the problem of classifying a feature vector Y in one
of the C classes of interest. A standard multi-class logistic
regression model defines the probability p; of Y belonging to
jth class, j=1, 2, ...., C-1 as a logit function [25]:

n <1 pjp ) = o+ XTﬂj + random error term. (1)
J— j —

The probability of Y belonging to the Cth class is defined as
-1
pi=1- CZ p;- This class is termed the reference class.
j=1
Fitting of such a model amounts to estimating the intercepts
«j and the vector 3; of unknown coefficients using a training
sample — of observations (on Y) from the C classes of
interest, so as to minimize the squared sum of random error.
Once the model is fitted, any given vector Y is assigned to
the class to which it would lie with maximum probability.
In our study, C=4. Having estimated the principal
components of the 26-dimensional feature vector X, we
obtain for each observation (X;; i=1, 2, ..., n) in the
training sample, the corresponding vector (1;) of the first
five principal components and fit the logistic regression
model.

Results

We first present the results for the data set described in section
“Data set for common structural fold within a class”.

Principal component analysis

We found that in each of the four classes of interest, the
first five principal components explain nearly 85% (see

Table 8 Estimates of intercept and coefficients (5; for jth PC) for different fold types in the structural class All Beta. Fold type Trypsin-like-

serine-protease is used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7
Concanavaline 111.381 38.774 22.323 —50.104 39.854 99.182 1.2854 —5.268
Immunoglobin like 172.176 57.598 39.323 —73.44 81.096 28.744 47.703 6.078
OB folds 171.860 57.325 39.482 -73.679 81.229 27.734 47.809 5.165
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Table 9 Estimates of intercept and coefficients (5; for jth PC) for different fold types in the structural class Alpha/Beta. Fold type Tim-Beta is

used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PCo6 PC7

Flavodoxin 146.439 53.569 —46.669 35.449 —143.669 —24.355 48.288 5.488
Ribonuclease H like 147.600 53.694 —46.664 36.826 —141.781 —24.945 48.642 5.819
Thioredoxin 147.571 53.645 —47.174 36.862 —142.458 —24.765 48.252 4.543

Table 2) of the total variance in the training sample.
Figure 2 shows the significance of the first five principal
components (PCs).

Role of different features in structural motifs

Analysis of the correlation of the first five PCs with
different features shows significant difference in influence
of certain features in different structural classes — in terms
of statistical significance of the correlation coefficient and
its magnitude and/or direction (positive or negative). Table 3
summarizes the main results.

From, this table it is clear that the classes A/l Beta and
Alpha+ Beta are more similar to each other as compared to
the other two classes and the classes All Alpha and Alpha/
Beta are similar with respect to the features that are found
to describe them. Len (length of the protein sequence under
consideration) is found as a significant feature in the
description of the A/l Beta and Alpha+ Beta but not in the
other two classes; another global feature mxpr (maximum
probability) is found as significant only in Alpha/Beta and
Alpha+ Beta. Histogram feature H2 is found significant
only in A/l Alpha; H13 in only Alpha/Beta; and H16 only in
Alpha+ Beta.

Cluster tendency (Clust) is found significant only in
describing the class Alpha+ Beta. Most of the other texture
measures are found significant in all the classes except that
the signs of their correlation with the combined descriptors
(the first three PCs) are opposite in the A4/l Alpha and
Alpha/Beta classes as against A/l Beta and Alpha+ Beta.

Predictive classification

As described earlier, several computational experiments are
conducted using random subsets of the dataset described in

section “Data set for common structural fold within a class”
as training samples. In each experiment, 4-class logistic
regression is fitted using the R-software (http://www.r-
project.org/); the first five principal components (PC) are
regarded as the explanatory (regressor) variables. Alpha+
Beta class is considered as the reference class. Classes of
the feature-vectors in the validation samples are predicted
using the fitted model.

Coefficients of the PCs in this model are shown in
Table 4. The best model gave more than 82% prediction
accuracy for each class. Averages (of cross-validation
results) of the accuracy parameters are shown in Table 5.

The accuracies of predictive classification by other
models have also been satisfactory. The following table
shows average performance.

Results for different folds within a class

For the data set described in section “Data set for
different structural fold types within a class” we have
found that the first five PCs explain more than 85% of
variation in the data. The contributions of individual PCs
are also comparable with those shown in Table 2 and
Fig. 2.

Role of different features

Analysis of correlation of the first five PCs with the
features described in Table 1 shows interesting results. As
far as comparison between classes is concerned the roles of
features significant in distinguishing between the classes
remain similar to those summarized in Table 3. However,
comparisons within a class show distinct roles of certain
features with respect to different folds. Table 6 underneath
summarizes the key results.

Table 10 Estimates of intercept and coefficients (5; for jth PC) for different fold types in structural class Alpha + Beta. Fold type Ferredoxin is

used as a reference in logistic regression model

Fold type Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7
Beta grasp 0.293 0.201 0.336 0.528 -0.510 —-1.057 —0.861 1.182
Cystatin like 1.844 0.373 1.683 0.856 2.258 1.122 0.398 1.415
Protein kinase like —56.551 3.281 25.134 6.901 22.087 23.250 10.222 24.752

@ Springer


http://www.r-project.org/
http://www.r-project.org/

2748

J Mol Model (2012) 18:2741-2754

Table 11 Average accuracy parameters (in %) for classification of
different fold types within class All Alpha: True positives (TP), False
positives (FP) and area under the ROC- curve (4roc)

Table 13 Average accuracy parameters (in %) for classification of
different fold types within class Alpha/Beta: True positives (TP), false
positives (FP) and area under the ROC- curve (4roc)

Fold type TP FP AROC Fold type TP FP AROC
Alpha Alpha superhelix 83.9 7.5 93.2 Flavodoxin 85.3 12.1 90.2
EF hand like 57.1 14.6 74.4 Ribonuclease H like 59.6 12.4 84.6
DNA/RNA 3 helical 62.3 13.9 79.4 Thioredoxin 61.4 10.6 82.3
Cytochrome C 91.7 4.1 91.6 Tim Beta 89.3 1.6 97.4

Because of higher within-class variability (due to different
fold types), except H16, roles of no other local or global
features are so distinct as found in the case of common fold
types within a class (section “Role of different features in
structural motifs” above). Except “Len”, no other feature is
found to prominently distinguish even between groups of
classes. The role of length of protein sequence (len) is now
found significant in distinguishing between the classes
Alpha/Beta and Alpha+ Beta against All Alpha and All Beta.
This indicates that the sizes of local (secondary) structural
domains are more variable with respect to the fold types in
the latter classes as compared to those in the former. This is
justified in view of the fact that the classes Alpha/Beta and
Alpha+ Beta already have a mixed kind of local structural
domains, so variability with respect to different fold types
within such a class does not influence the role of length
(size) of the domains.

Predictive classification of structural fold types
within a class

As described in section “Data set for different structural
fold types within a class”, within each class we have
considered proteins with four different types of structural
folds. We have used multi-class logistic regression on the
first seven PCs, to predict these structural folds within each
class. As in each class, the first seven PCs explained more
than 85% of the total variation in data, so the first seven
PCs were considered as predictor variables. Similar to the
case of data with common structural folds within a class,
we have carried out several computational experiments
using the jackknife technique of cross-validation.

Table 12 Average accuracy parameters (in %) for classification of
different fold types within class All Beta: True positives (TP), False
positives (FP) and area under the ROC- curve (4roc)

The estimated regression coefficients and intercepts of
best models for each class under consideration are shown in
Tables 7, 8, 9, and 10. For each class, the models show
overall predictive accuracy (i.e., percentage of correctly
classified fold types) > 73%. Averages (of cross-validation
results) of the accuracy parameters are shown in Tables 11,
12, 13, and 14.

Predictive classification of using different structural folds
within a class

We have also carried out computational experiments on
predictive classification by multi-class logistics using
training samples of sizes about 40 from each of the
structural classes — All Alpha, All Beta, Alpha/Beta, and
Alpha+Beta. In this case the first seven PCs explain the
desired ( > 85%) of total variation in the data. In all
experiments, the fraining sample from a class consists of
about ten observations for each of the four different types
(described in section “Data set for different structural fold
types within a class”) of folds prominently found in this
class. Class Alpha+ Beta is regarded as the reference class
for fitting of the logistic regression model with the first
seven PCs as the predictor variables.

Estimated parameters of the model are shown in Table 15
and average (of cross-validation results) accuracy results
are shown in Table 16.

The overall accuracy of correct classification (TP) in the
best model is around 74%. This as well as the average TP
for each class are lower as compared to those for the case
(section “Predictive classification” above) when the train-
ing sample from a class consisted of common structural

Table 14 Average accuracy parameters (in %) for classification of
different fold types within class Alpha+Beta: True positives (TP), false
positives (FP) and area under ROC- curve (4roc)

Fold type TP FP AROC Fold type TP FP AROC
Concanavaline 89.6 34 98.6 Beta grasp 64.7 18.1 86.5
Immunoglobin like 66.7 12.2 90.1 Cystatin like 74.2 8.2 92.4
OB folds 59.4 13.1 85.9 Protein kinase like 98.4 1.1 99.2
Trp like serine protease 88.9 3.8 98.2 Ferredoxin 62.3 9.4 86.9
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Table 15 Coefficients (components of vectors 3; in model-equation (1) for jth class) of the PCs; and the intercept (cy)

Class Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7
Alpha —0.661 0.065 0.897 0.542 —1.498 —0.872 1.418 0.359
Beta -0.18 0.164 -0.379 0.476 0.111 -0.711 —0.385 -2.099
Alpha/Beta 0.097 0.232 0.059 0.082 —-1.184 —1.637 0.141 —2.038

fold type. It is expected because in the present case the size
of the training sample is comparable to that used in the case
of common with-in class folds, but this training sample is
significantly heterogeneous.

Discussion

Statistical modeling and analysis of protein data carried out
in this paper has provided important quantitative insight
into major structural families (as identified in SCOP
database) and has also offered computationally feasible
and efficient predictive methods for their classification.
Computational methods using feature vectors are remark-
ably simpler to structural homology for classification of
proteins. Our approach has added advantages of reduced
dimension of the feature vector and use of statistical data
mining.

It is notable that though we have reduced the dimension of
quantitative feature-vector representation of protein tertiary
structures to at the most seven, the accuracy of structural
classification we get is comparable to or better than that of Chi
etal. [12, 13]. In the case of common fold types representing
a structural class, the dimension as less than five is adequate
for predictive classification with high accuracy. Apart from
dimensionality reduction, insight into relative importance of
certain features in specific structural folds is another gain
over the best-known relevant approach [12].

Efficient and theoretically sound method of principal
component analysis (PCA) is used here for dimensionality
reduction. Principal components being linear transforma-
tions of the original data are easy to compute. Moreover,
these being orthogonal (and hence uncorrelated) to each
other can also be used as explanatory variables in the
powerful predictive applications of regression modeling.

Table 16 Average accuracy parameters (in %): True positives (TP),
false positives (FP) & area under ROC- curve (4Aroc)

Class TP FP Aroc
All Alpha 59.6 12.5 83.7
All Beta 67.8 16.8 82.6
Alpha/Beta 57.7 18.5 77.4
Alpha+Beta 69.5 5.2 88.7

Comparative analysis in terms of significant correlation of
features with the key PCs reveals interesting results on
relative importance and representative roles of certain
topological, structural and stereochemical features in
describing and distinguishing the four major ‘classes’ of
protein structures.

As shown in Table 3, no histogram features in band4, i.e.,
no long-range inter-residue distances are important in
characterizing the All Alpha and All Beta type folds. Texture
measures and hence topological as well as stereochemical
factors are found more important (though mostly with
respect to the sign of correlation with the important PCs)
than local features in distinguishing between these classes.
Alpha/Beta structures appear closer to All Alpha with respect
to these features, whereas Alpha+ Beta types seem to share
this similarity with A/l Beta.

When common fold types within a class are considered,
length (len) of a protein sequence under consideration is
found to play an important role in distinguishing A/l Beta
and Alpha+ Beta classes from All Alpha and Alpha/Beta.
Another global feature mxpr (maximum probability) is
found to distinguish A/pha/Beta and Alpha + Beta from the
other two classes. Interestingly, for each class, one
significant local feature or global feature along with the
above is also found as an important descriptor. It is notable
that within class variability different fold types perturb this
influence except for the roles of H16 and /len in the mixed
class Alpha + Beta.

Exact values of correlation coefficients and the regression
coefficients of the PCs in each class can be used for detailed
statistical analysis of interactive roles of local folds in a tertiary
structure, which is not possible otherwise. Using these values,
computer aided molecular designs of certain structures — e.g.,
functionally important tertiary motifs — may be obtained.
Random variation in values of features found important in
distinguishing different types of structural folds (e.g., Table 6)
would provide computationally simpler techniques than
molecular dynamics for simulation of protein tertiary folds
and would also help in testing the empirical hypotheses on
this yet un-deciphered phenomenon. We shall report some
results in this regard subsequently.

Multi-class logistic regression has been extensively used
in wide-ranging applications including medical- and bio-
informatics and immunology (e.g., [25, 26]). Here it
provides a computationally feasible and predictive method
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of classifying protein structural families. It is remarkably
simpler in computation than the methods of structural
homology used to distinguish between structurally similar
and dissimilar proteins. Another significant importance of
this method lies in the fact that we can assign confidence
levels of accuracy to predictive classifications and also to
class-definition in terms of the feature vectors.

Our results for classification between four major structural
classes, with (i) common fold types representing a class; and
also for (ii) different fold-types within a class, are excellent in
terms of overall accuracy of classification and area under
ROC. Often in predictive applications, there is compromise
between true positives and false positives. Aroc — area
under the receiver operating characteristic curve (ROC)
provides a comprehensive measure of reliability and consis-
tency of a predictive method or model [27, 28]. The models
fitted here for classification into one of the four structural
classes and those for further discrimination among different
fold types within a class are found to be good in terms of this
criterion. The corresponding regression models can be used
in predictive application to classify any new protein.

Further, the present study strengthens the possibility of
deploying similar quantitative modeling to predict function-
ally important structural motifs or functional sites in proteins.
We have used it to infer the presence and location of certain
functional sites in new or predicted structures of proteins [29].
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Appendix

List of proteins referred to in section “Materials and methods”
(a) pdb ids of the 225 proteins in the data set referred in
section “Data set for common structural fold within a class”

All Alpha All Beta Alpha/Beta Alpha+Beta
laoy la3r la4m 1ab8
1b9m 1b4r 1aj2 lafj
1bby Ibww 1b5t laop
Ibia Icfl 1bd0 1b64
1bja levr 1bqg leg2
1b10 1dqi leew Idur
1bm9 lehx lets lekr
lcf7 lex0 1d8c 110x
1d8j lex0 1d8w 1f3v
1dp7 1100 1dbt 19y
lel?7 lgof 1dos 1feh
le3h lgyv ldxe 1ffg
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All Alpha All Beta Alpha/Beta Alpha+ Beta
lef4 li8a ledm 1fi4
letx lifr leep 1ftr
1fc3 lim3 legv 1fvg
11li 1jz8 lejx Igmu
1pl lkmt lezw lgpj
1fse lkyf 1foy 1h72
1fsh 116p Ifeq 1hbn
1g3w 1lla 1fib 1hbn
1gvd 11mi 1gkp 1hw8
1hc8 Imlx 1h41 1i19
Ther Imsp 1h19 lilg
1hks In9p 1i0d 1in0
1hlv Inci 1160 liuj
lhst Inep litu livz
1hwl lo6bv 1j5s 1527
lilg 1075 160 1j5e
1i27 losy 1579 1jmt
li5z 1p7h 1jfx 1k47
1ifl 1pby ljgqn 1kkh
lign 1pl3 1jub 1kn6
lirz 1q0e 1k77 1koh
lixc 1qfh 1kbl 1kp6
lixs 1r4x 11t8 113k
1j5e Iroc 1luc 1lou
ljgs Isvb ImSw 1199
1jhf Itza In8f 11xn
1jhg lu2c Infp Imlh
1k6y luad Ingk 1mg7
1k78 lug9 Inth Imla
1kqq 1v8h Invm Imli
1ku9 lvca lolz Imwq
118¢q lvca 1ob0 1nh8
11dd 1xak lohl Inue
1lva 1x08 lolt Inxi
Imkm 2a9d lonw Inza
Imzb 2b20 loy0 lo51
1057 2¢9q Iplm 1o8b
lofc 2dpk Iplx loy8
lokr 2h7w 1pbu
lopc 2hft Ipca
loyw 2j2z 1phz
1p7i 2mem Ipie
1pp7 4kbp Ipys
1qlh 1q4r
Irlt 195y
1r71 1q8b
1r7j 1q8k
1rep 1qdl
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(b) SCOP ids of the 225 proteins listed in the above Table

All Alpha

All Beta

Alpha/Beta

Alpha+ Beta

dlaoya 16087.pdb
dIb9mal_16118.pdb
dlbbya_ 16149.pdb
dlbiaal 16083.pdb
dlbjaa_ 16122.pdb
d1bl0al_16053.pdb
dlbm9a_ 16116.pdb
dlcf7a__16151.pdb
dld8ja_ 16153.pdb
dldp7p_ 16159.pdb
dlel7a_ 16143.pdb
dle3hal 16257.pdb
dlefda  16272.pdb
dletxa_ 18978.pdb
dlfc3a  16237.pdb
diflia_ 16160.pdb
dlfpldl_59939.pdb
dlfsea_ 60000.pdb
dlfsha_ 60006.pdb
dlg3wal 65133.pdb
dlgvda_ 83338.pdb
dlhc8a_70963.pdb
dlhcra_ 16020.pdb
dlhksa_16172.pdb
dlhlval 65854.pdb
dlhsta  16140.pdb
dlhwlal 16111.pdb
dlilgal 65982.pdb
dli27a_ 61555.pdb
dli5zal 83669.pdb
dlifla_ 16183.pdb
dlignal 16048.pdb
dlirza_ 76772.pdb
dlixcal 83764.pdb
dlixsbl_76933.pdb
dljSer_ 71561.pdb
dljgsa  66683.pdb
dljhfal 63057.pdb
dljhga 19009.pdb
dlk6yal 68239.pdb
d1k78al_68255.pdb
dlkqga 72885.pdb
dlku9a_ 77544.pdb
d118gal 77809.pdb
dlldda_ 73841.pdb
dllvaal 74276.pdb
dlmkmal 79242.pdb

dla3rl2_20890.pdb
dlbdra_ 22072.pdb
dlbwwa__20518.pdb
dlcflal_21907.pdb
dlcvral_21949.pdb
dldgia_ 22357.pdb
dlehxa_ 21950.pdb
dlex0al_90465.pdb
dlex0a2 90466.pdb
d1f00il 22368.pdb
dlgofal 21807.pdb
dlgyva_70790.pdb
dliBaa_ 61951.pdb
dlifra_ 71203.pdb
dlim3d__62568.pdb
dljz8al_67830.pdb
dlkmta 77442.pdb
dlkyfal 73220.pdb
dll6pa__ 73626.pdb
dlllaa3_21861.pdb
dllmia_78098.pdb
dlmlxal_74422.pdb
dlmspa_ 22333.pdb
dIn9pa_ 80343.pdb
dlncia_ 22191.pdb
dlnepa  80440.pdb
dlo6val 81099.pdb
dlo75al_81117.pdb
dlosya 93502.pdb
d1p7hll_94271.pdb
dlpbya3 94419.pdb
dlpl3a_ 88158.pdb
dlqOea_ 95504.pdb
dlqgthal _21893.pdb
dlrd4xal 97054.pdb
dlroca_ 97673.pdb
dlsvbal 21814.pdb
dltzaa_107468.pdb
dlu2cal 107610.pdb
dluadc  88379.pdb
dlug9a3_99363.pdb
dlv8hal 119870.pdb
dlvcaal 21649.pdb
dlvcaa2 21685.pdb
dlxaka 115037.pdb
dlxo8a_ 115698.pdb
d2a9dal_126431.pdb

dladma_ 29014.pdb
dlaj2a_ 29665.pdb
dlbSta_ 29676.pdb
d1bd0a2_28642.pdb
dlbqgal 29217.pdb
dlccwb_ 29646.pdb
dlctSa_ 28663.pdb
dld8ca__29325.pdb
dld8wa_ 29394.pdb
dldbta_ 28539.pdb
dldosa_ 29175.pdb
dldxea 29310.pdb
dledmm__59226.pdb
dleepa 28636.pdb
dlegva_ 29652.pdb
dlejxc2 83185.pdb
dlezwa_ 29558.pdb
difoya_ 29673.pdb
dlfcqa  65006.pdb
dlfrba_ 28665.pdb
dlgkpa2 70232.pdb
dlh4lal_83472.pdb
d1hl9a2_90651.pdb
dli0da__ 61487.pdb
dli60a_ 71118.pdb
dlitua  71423.pdb
dlj5sa_ 71580.pdb
dlj6oa_ 77088.pdb
d1j79a_ 62675.pdb
dljfxa_ 62943.pdb
dljgna_ 77159.pdb
dljuba_ 90908.pdb
d1k77a__72096.pdb
dlkblal_68384.pdb
d1lt8a_ 78186.pdb
dlluca_ 29547.pdb
dlmSwa__84836.pdb
dIn8fa_ 85397.pdb
dinfpa 29555.pdb
dlngka_ 92050.pdb
dIntha_ 80730.pdb
dlnvma2 86250.pdb
dlolza 86555.pdb
dlob0a2 81257.pdb
dlohla_ 87035.pdb
dlolta_ 93334.pdb
dlonwa2 87173.pdb

dlab8a_ 39414.pdb
dlafja_ 39338.pdb
dlaopal 39501.pdb
dlb64a_ 39306.pdb
dlcg2a2 39360.pdb
dldura_ 38943.pdb
dlekra_ 39380.pdb
d1fOxal 39483.pdb
d1f3va 39382.pdb
d1f9ya 83249.pdb
dlfeha3 38998.pdb
diffgb  39384.pdb
d1fi4a2 59848.pdb
dlftral 39485.pdb
dlfvga 39408.pdb
dlgmua2 65336.pdb
dlgpja3 65453.pdb
d1h72¢2_60713.pdb
dlhbna2 60899.pdb
dlhbne_ 60902.pdb
dlhw8al_61298.pdb
dlil9al_61522.pdb
dlilga2 65983.pdb
dlin0al_83694.pdb
dliuja_ 90701.pdb
dlivza  76863.pdb
dlj27a_ 90778.pdb
dljSej  71553.pdb
dljmta_ 63180.pdb
d1k47a2 72041.pdb
dlkkha2 72646.pdb
dlkn6a 72770.pdb
dlkoha2 68720.pdb
dlkp6a_39397.pdb
dl13kal_73539.pdb
dlloua 39323.pdb
dllq9a_78129.pdb
dllxna_ 84737.pdb
dlmlha2 78416.pdb
dlmg7a2_84955.pdb
dlmlaa2 39383.pdb
dlmlia_ 39070.pdb
dlmwqa_ 91481.pdb
dInh8a2 80508.pdb
dlnuea  39076.pdb
dlnxia_ 86381.pdb
dlnzaa 86444.pdb
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All Alpha

All Beta

Alpha/Beta

Alpha+ Beta

dlmzba_ 91497.pdb
dlo57al 92483.pdb
dlofex2 92827.pdb
dlokra_ 93269.pdb
dlopca_ 16231.pdb
dloywal 93760.pdb
dlp7ia_ 94279.pdb
dlpp7u_ 94973.pdb

d2b20al 127685.pdb
d2c9qal 130138.pdb
d2dpkal 131616.pdb
d2h7wal 136225.pdb
d2hftal 21951.pdb
d2j2zal 137974.pdb
d2mcma_ 22207.pdb
d4kbpal 22345.pdb

dloy0a__ 87543.pdb
dlplma2 87697.pdb
dlplxa_ 104060.pdb

dlo51a_ 92480.pdb
dlo8ba2 81181.pdb
dloy8al 87563.pdb
dlpbua_ 88030.pdb
dlpcaal 39063.pdb
dlphzal 39358.pdb
dlpiea2 94707.pdb

dlpysb4 39310.pdb

dlqlha_ 95580.pdb
dlIrlta__104769.pdb
dlr71a__104823.pdb
d1r7ja__104836.pdb
dlrepcl_16125.pdb

dlgdra_ 95823.pdb
dlgSya_ 95950.pdb
dlg8ba_ 96201.pdb
dlq8ka2_104557.pdb
dlqdlal_39493.pdb

(c) pdb ids of the proteins in the data set referred to in section
“Data set for different structural fold types within a class”

Codes of the fold types are as in SCOP (c.f Table in
section “Data set for different structural fold types within a
class” for names)

All distinct structural domains (found in SCOP) of the
type listed here were used in the study. Therefore no

separate list with SCOP ids of those is given here.
Sequential homology between most pairs is <20%. How-
ever, in some pairs within a subclass (e.g., in a.207) it is
greater than 45%, common domains of both members of
such pairs were not used simultaneously in training or
validation samples.

All Alpha All Beta

a.207 a.51 a.8 a7 b.51 b.1 b.71 b.80
1A17 1C3Y 1B1B 155C 1CPN 1CCZ 1A1ID 1A7S
1BC9 1DGU 1C20 1A8C IDYK 1CDY 1A62 1BIO
1DVP 1EH2 1E17 1C2N IDYP 1CID 1BKB 1BRU
1EYH 1EXR 1TUF 1C52 IFNY 1ESU 1BR9 1BT7
1HH8 1FPW 1JGS 1C53 1GBG 1ESO 1D2B 1CQQ
1HXI 1GGW 1KN5 1C6R 1GNZ 1F2Q 1FLO 1DPO
1JWF 1HQV IMGT 1C6S 1GV9 1FHG 1H9K 1EAX
1KLX 11Q3 IM1J 1C75 1GZC 1FNL 1140 1ELT
1LKV 1JFK IMZB 1CCs 1H9P 1HNF 1J6Q 1EUF
1LRV 1K95 1IQNT 1CCR 1T 1I8A 1JB3 1EXF
IN8U 1LKJ 1R36 1CO6 1KS5 1TAM 1K0S 1GVZ
INZN INCX IRI7 1COR 1LED 1179 1KHI 1H4W
10XJ INX2 1IRR7 1COT 1LU1 1JBJ 1KL9 1HJ8
1PAQ INYA IRYU 1CTJ IMVE cv IKRS 1HJ9
1PC2 1001 IS7TE 1CXC IMVQ 1JPE IKXL 1K2I
1Q2Z 1PUL 1V3F 1CYJ INLS IMFM 1Q46 1KXB
IR8M 1Q80 1WIJ5 1E29 104Y 10AL ISNC 1LO6
IRW2 1QV1 1XCV 1E8E 10A4 10LL 1SR3 IMZA
1RZ4 IRRO 1XD7 IF1F 10LR 10P4 ITWL INN6
1TE4 1S3pP 1YG2 1FI3 1S2B 1IROC 1UAP 10P0
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All Alpha All Beta
a.207 a5l a.8 a.7 b.51 b.1 b.71 b.80
1WY6 1Sel 1791 1GDV 1SBF ITEY 1WIS 10S8
1XTO 1SL8 2AXL 1GKS 1UAI 1UFG 1WJJ 1P3C
1Y6l ISNL 2BV6 1HRC 1UX6 1UGN 1X60 1PQ7
1Y8M 1SRA 2COM 116D 1ZA4 1WG3 1XWE 1QNJ
173X 1TUZ 2CSO 1180 2A6Y 1WIC 2B29 1QTF
1ZU2 1UHN 2CYY 1JDL 2A6Z 1IXMW 2EIF IRJX
2BF0 IWLM 2E34 1KX7 2AF] 1X08 2JA9 1SI5
2D2S 2JPO 2ESH 1LS9 2AYH 1ZXQ 2K5W 1T32
219C 2P71 2F5C 1MZ4 2C9A 2CU9 2PRD 1TON
2ION 2PAS 2FBH 1YCC 2ERF 2DPK 2TMP 2A31
2NSZ 2PVB 2FBI 2AI5 2NLR 2FCB 3TSS 2CXV
208P 2SAS 21PQ 2C8S 2FWU 2HSC
SPAL 20D5 2DVH 2MFN 2RG3
2V7F 3C2C 2SFA
2VoV 451C 2SGA
2VQC 5CYT
Alpha/Beta Alpha+Beta
c.27 c.77 .68 c.l d.30 d.34 d.300 d.129
1AHN 1CXQ 1A2] 1AS3 1ASR 1ICEW 1A06 1FJ7
1B1A 1EH6 1BED 1CT5 1B9R 1EQK 1FOT 1127
1CZN 1EO1 1HD2 1EDT 1E9M 1G9%6 1GZK 1LXJ
1DCF IHYV 115G 1GQN 1EF5 1KWI 1HOW INO8
1DZ3 1139 1J9B IHW6 1GNU INNV 1ILUF INZA
1EIW 1102 1IKNG 1160 1L2N 1Q7H IM2R 1P1L
1F4P 1J9A 1LU4 1J5T 1IMG4 1IROA 10EC 1P1T
1FUE 1JL1 1073 1J60 IMID 1SJW 1P14 1Q8B
1FYV IMGT 108X 1JCM IRAX 1SQW 1PME IRIS
1IFYX 1013 10N4 1K77 IRRB 1TP6 1ROP 1579
1HOS 101W 1PQN 1KM4 1TTN 1TUH 1RES 1SJQ
11D8 10VQ 1QGV 1ILYX 1UFO 1Z18S 1RJB 1UKU
1156 10VY ISEN IMXS 1v2y 2A15 1S9] 1URR
1JBE 1P90 1UN2 INS55 1V50 2CW9 1T46 IWEX
IM2E 1QNT 1VOW INFP IWE6 2CX1 1UU3 IWEY
1IMB3 IRDU 1WPI 1012 IWE7 2FXT 1UVs IWEZ
IMVO IRIL 1XVQ 10MO 1WF9 2GU3 1VJY 1WGS
INAT ISFE 1Z6M 1QWG IWFY 219w 1VZO 1WI8
INNI 1WOH 1Z6N ISFS IWGH 2K54 1XJD 1X4D
1P6Q 1WLJ 12720 1THF IWGK 2RFR 1XKK 1X5S
1QCZ 1YF5 2A2P 1TPE IWGY 2STD 1XWS 1X5U
1QKK 1ZBF 2A4H 1USH 1WIO 3B7C 1YWN 1XER
1IRCF 1ZBS 2A4V 1U83 1WJ6 3CPO 1ZYL 2CPH
1IRLJ 2ET] 2B5X 1UJp 1WX7 3CU3 2B1P 2CQ0
I TMY 2GUI 2CVB 1VD6 IWXA 3DM8 2JFL 2CQ1
1YKG 2GUP 2DJK 1VPQ 1WZ0 3E99 20J9 2CQ3
2A90 2HST 2DLX 1VZW 1X1IM 3EBT 2PPQ 2CQB
2AYY 3E9L 2FWH IXWY 1X03 3EBY 2QHN 2CQG
2AYZ 3E90 2FY6 1ZZM 1YJ1 3EIV 2RG6 2CQI
2B4A 2GZp 2HVM 2BYE 3EN8 3BQC 2IVY
2C4V 2HO01 2PLC 2BYF 8CHO 3C1X 2K3K
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All Alpha All Beta
a.207 a.51 a.8 a.7 b.51 b.1 b.71 b.80
2FCR 2HFD 2C60 7FDI
2FZ5 2CRS5
2PL1 2CU1
SNUL 2IDY
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